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SOME PROPOSITIONS

ON COST FUNCTIONS

INTRODUCTION

A usual intermediate product of neoclassical production theory

is the cost function. The cost function relates cost of production

to the quantity of output produced per unit of time, and in some

cases, prices of resources used in the production process. The

form of the cost function depends on the underlying production

function and the competitive conditions in each of the resource mar-

kets. Its form also depends on constraints imposed on the firm's

production decision. Cost functions derived from circumstances

where one or more resources are fixed in quantity are labeled short

run functions while those applicable to situations when all resources

are variable are referred to as long run functions.

While the length of the time period involved is frequently im-

plicit, the cost function is a flow concept relating the time rate

of cost to the time rate of output. As such, its relation to vari-

ous stock concepts like the quantity of capital equipment, the cumu-

lative output to be produced (volume), and work experience of the

organization at any point in time is difficult to specify. These

stock concepts are frequently ignored in classroom treatments of the

subject and in many attempts at empirical estimation of the cost

function. This simplification is sometimes justified if the firm is

in a steady state situation where the demand rate is expected to

continue indefinitely. Hirshleifer [6, 236-237] has argued that the

simplification is consistent as well with the situation in which
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volume is expected to be proportionate to production rate. Never-

theless, explicit consideration of these stock concepts is of crucial

importance in many industrial settings.

The stock concepts are so important that in some industries

variations in costs are routinely explained only by stock changes,

ignoring the flow concepts explicitly treated by economic theory.

For example, the learning curves or progress functions developed to

describe costs in the aircraft industry typically relate costs

to the number of items produced without any explicit reference to

production rate or rate of resource use.

Attempts to integrate these two methods of describing variations

in costs of production, learning curves and cost functions, have met

with only limited success. Alchian [1] and Hirshleifer [6] have

discussed some of the issues involved and have provided some intuitive

expectations about the form of the resulting relation. Alchian states

nine propositions on the variations of program costs due to changes

in production rate, volume, the time horizon and the firm's production

experience. Hirshleifer extends this work and relates it to more

traditional cost theory. However, both works stop short of integrating

their cost theory with production theory. Preston and Keachie [8]

also relate learning to cost functions, but their graphical analysis

of the situation also lacks precision. Oi [7] goes somewhat further.

He purports to derive Alchian's nine propositions from an inter-

temporal production function. His general treatment explains learn-

ing in terms of standard production theory, but he too fails to specify

the form of the cost function. Rosen [9] also investigates learning

and production, but he stops short of deriving a cost function.
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Washburn 1101 addresses these itsues directly. He formulates a

model which relates discounted cash flow to production rate and the

cumulative number of items produced. His model draws heavily on (i)

the characteristics of production on an assembly line and (ii) the

efficiency of "crews" of labor at each position on the line. This

rather specialized model points the way for the generalization below

which is based on neoclassical production theory.

In this paper, a model is developed for a firm producing to an

order which specifies a quantity and a delivery date for output. The

order serves to constrain a production program which minimizes the

discounted cost of producing at a constant output rate. The model

is formed by augmenting a homogeneous production function with a

learning hypothesis.

The model and the resulting cost function are developed below.

The cost function is then compared to the results of Alchian,

Hirshleifer, and Oi.

THE MODEL

The basic production model employed here uses a production

function to relate output rate to two classes of inputs. The first

class, termed labor services, is composed of resources whose use

rate can be varied throughout the production program. The second

class of resources is termed capital. Capital resources are acquired

prior to the start of production and their quantity is not changed

during the program. We assume that the relative prices of resources

within the classes do not change so that each class may be represented

as a single composite resource.

I



4

The variables of the model are described as follows:

q = rate of production on the program

L(t) - rate of labor use at t

L - quantity of augmented or effective labor

K = quantity of capital

t
Q(t) = fq dT = cumulative production experience at t

0

6 = a parameter describing learning

Y = a returns to scale parameter

C = discounted program costs in units of labor

T = time horizon for the production program

V = volume of output to be produced by T

P(t) = daily unit cost of capital in units of labor

= time elasticity of the cost of capital, a parameter

a = elasticity of substitution

The production function relates the rate of labor use and the stock

of capital to output rate at any point in time. It is assumed to be

homogeneous of degree y in the arguments K, capital, and L, effective

(or augmented), labor. That is

q = Lyh(K/L) (i)

The production function is assumed to have positive marginal products

and convex isoquants. This requires

h'> 0, h-h'K/L > 0, and h"< 0

Decreasing returns to scale are assumed by requiring y < 1.
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Learning enters the situation as labor augmenting technolog-

ical change. So that

L - Q(t)(t) (2)

The elasticity of effective labor with respect to cumulative

experience, 6, is assumed to be positive and less than one.

One additional constraint is imposed on the production pro-

gram: q is constrained to be independent of t so that

q = V/T (3)

and

Q(t) = qt (4)

This constraint is implicit in Alchian [1] and explicitly stated

in Hirshleifer [6:2381 and Oi [7:587]. The implications of re-

laxing the constraint are explored in some special cases by Womer [11].

We also assume that K cannot be varied during the production

program. But if K and q are both constant during the program, then

from (1) it is clear that L is not a function of t. Dividing (2)

by q and rewriting yields

1(t)/q = (L/q)Q- (t) (5)

In an environment where K and q are fixed, this log-linear relation

between labor required per unit of output and cumulative output is

indistinguishable from a unit learning curve. Substituting from (4)

shows

t(t) - L q- t-  (6)

As a direct consequence of learning and a constant output rate, the

rate of labor use falls with time.
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In explaining his propositions Alchian [1] emphasizes the

relation between planned volume and the technique of production

chosen. He argues that "... increased expenditures on more durable

dies (capital) should result in (a) more than proportional increase

of output potential. . ." This, he implies, results in large volume

programs tending to be more capital intensive than small volume

programs.

Furthermore, Alchian's discussion makes it clear that he expects

planned volume to affect the choice of production technique even in

the absence of learning.

We suppose the mechanism which relates volume to production

technique to operate as fcllows. With no learning (6 = 0) a produc-

tion technique is specified by the capital-labor ratio. If the

production rate is fixed and if the technique of production does not

change, the length of the program, T, limits V. Suppose that the unit

cost of capital increases at a decreasing rate with T. Under these

circumstances, expanding volume by increasing T requires a less than

proportionate increase in expenditure on capital. The same quantity

of capital is used however. Larger volume also requires more labor,

which increases the present value of the wage bill. If the percentage

increase in the expenditure on capital is less than the percentage

increase in the present value of the wage bill, cost minimization

requires that capital be substituted for labor by shifting to a more

capital intense technique of production.

For convenience the daily unit cost of capital, P, is assumed to

be a log-linear function of t.

P(W) - pt -  (7)

where 0 < C 1 and p is the unit capital on day one. So even if the



discount rate were zero, the unit capital cost increases at a de-

creasing rate as required, i..e.

T
f P(t) dt - pT -/(l-C)
0

The unit cost of capital and program costs are measured in

units of labor, so the wage rate is implicit. Also, time is measured

in units large enough so that the discount rate is equal to one. The

present value of the cost stream is, therefore,

T -C -t
C = f [R(t) + Kpt -e dt (8)

0 T T

= Lq ft e dt + Kp f t e dt
0 0

Let

f t-e-dt = r(I-6,T) and
0

I t ce-tdt = r(l-c,T) denote the incomplete gamma
0 function.

Then (8) may be written as

C = Lq- r(l-6,T) + Kpr(l-c,T) (9)

Notice that q-6(1-6,T) can be thought of as the discounted

price of effective labor while pr(l-e,T) can be thought of as the

discounted effective price of capital.

The firm's problem is to

Min C - Lq-6r(1-6,T) + Kpr(l-c,T) (10)

s.t. q - Lyh(K/L)

q is determined by the program ending requirements V and T in (3)

so production rate is not a decision variable in (10).

The first order conditions for cost minimization written in

ratio form are

(yLT-h-L T -1 hK/L/(Ly-1 h-) - q 6 r(l-6,T)/[pr(l-c,T)]

0900." A
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Let

x= q- r(1-6,T)/[pr(l-e,T)] (11)

be the effective labor to capital price ratio. Then

yh/h' - K/L = x (12)

Let g represent the solution to this condition, i.e.

K/L = g(x) (13)

Substituting (13) into the objective function and using the

constraint (1) yields

C = q'/Yh-'[g(x)][q-6r(l-6,T) + g(x)pr(l-c,T)I (14)

= ql/yh-l[g(x)]pr(l-c,T)[x + g(x)]

= yq /Ypr(l-c,T)/h'[g(x)]

the cost function.

With T fixed, the cost function shows that production rate can

affect program costs in two ways.

First, increasing production rate causes costs to increase at

an increasing rate because of diminishing returns to scale. But

second, increasing production rate causes the price of effective

labor to fall, decreasing the effective capital-labor ratio, increasing

h' and causing costs to fall. The relative magnitudes of these effects

determine the impact of production rate on program costs.

Increasing volume with a constant production rate affects costs

by increasing T. There are two effects here as well. First, the

effective price of capital is increased, tending to increase costs.

Second, the effective price ratio may be increased or decreased

affecting costs by changing h'. Again, the magnitude of these effects

and the sign of the second effect determine the net impact of volume

on program costs.

The solution at (13) can also be used to investigate the impact

of volume on the choice of the production technique.

.,i
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We take the program capital-labor ratio to be the number of "days"

of capital service divided by the total labor required for the program.

Or
T

R = T K [fl(t) dt] (15)
0

Substituting from (6) and (13) and performing the indicated integra-

tion yields

R = (l-6)V g(x) (16)

Again there are two effects, a direct effect which is positive

and an indirect effect which may be positive or negative. To evalu-

ate the net effect of increasing volume at a constant production

rate consider the partial derivative of (16) with q fixed

aR/aVIq = (l-6)V6-1g(x) + (l-6)V g'(x) [ax/aVj q] (17)

Evaluating g' as

g'(x) = g(x)a/x (18)

where a is the production function's elasticity of substitution yields

aR/aVlq = (l-S)V 6-g{6+(Va/x)[ax/aVlq]}

Performing the indicated differentiation using (12) and (3) yields

aR/a VI (1-6)V -1g{6+a[T-6 e-T r- (1-6,T)-T -,e - T - (1-c,T]} (19)
q

Artin [2:10] shows that the incomplete gamma function, r(a,T),

is log-convex in a. Furthermore,

T(Iu IeTr-1 (zT) dln[r (c,T)]I/di (20)
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Therefore, Tae-T r( a,T) increases with a. Using this fact,

shows that the expression at (19) is positive if e > 6. If 6 > £

the expression may be positive or negative depending on the sizes of

6 and a. If there is no learning, so that 6 = 0, cost minimization

is clearly sufficient for R to increase as volume expands at a con-

stant production rate. Despite this fact this model contradicts

several of Alchian's and Hirshleifer's results.

A COMPARISON TO PREVIOUS WORK

Alchian (1] and Oi (7] state nine propositions concerning the signs

of first and second partial derivatives of total discounted program

costs. Of these nine, two (propositions seven and eight) concern the

effect of starting production at a date later than t = 0. They are

not considered here. The learning hypothesis, Alchian's proposition

nine, is explicitly included in the model. In addition, Hirshleifer

(6] states two propositions. Each of these eight propositions, six

due to Alchian and two due to Hirshleifer, is examined below.

By using (3), the cost function at (14) can be regarded as a

function of any two of the three variables q, V, and T. The two forms

of the function used below are distinguished as C (T,q) and C (V,q)

to make clear which variables are explicitly involved.

The propositions to be examined are listed in Table 1. Of the

eight propositions, our assumptions are sufficiently strong to satisfy

propositions one, three through five, and Hirshleifer's first propo-

sition. The other three propositions fail to be satisfied under at

least some conditions. These three propositions each concern the

behavior of the change in cost with respect to production rate.



Table 1

Proposition and Model. Results

Propositions Sign Asserted Model Results

Alchian and Oi

1. 3C(V,q)/Dq + +

2. a2C (V,q)/Dq 2  + + if y is small and
a is small

3. 3C(V,q)/3v + +

4. a2C (V,q) /3V2

5. 3[C(V,q)/VI/aV-

6. a 2C (V,q)/aVaq -if a is large and

Hirshlei fer

Hi. 9C(T,g)/3q + +

H2. a2C (T,q)/3q 2  + if q is large + if y is small and.'

a is small

In particular, Alchian's (1:25] proposition two is, "The incre-

* mernt in C (the discounted cost stream) is an increasing function of

the output rate." In the context of our model however,

a2C (V,q)/aq2 - q 2Y2h- (l/y+e-l) (l/y+e-2)pI'(l-e,T)g (21)

+ 2(l/r+e-2)pr(2-c,T)g + pr(3-e,T)g

+ (l/y-l) (l/y-2)g -6 r(1-6,T) + 2(l/y-2)q16 r(2-6,T)

+ r(3-6) - aq6 r(l-6,T)'g/gx

where
T (r(2-6,T)/r(l-6,T)] -[r(2-e,T)/r(1-c,T)]- e (22)
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The fact that

tr(a,T) - r(a+l,T) Ta eT > 0 (23)

can be used to show that the first six terms of (21) are positive

if y<1/(l + 6). So if a = 0, which requires effective labor and

capital to be used in fixed-proportions, then y < i/(1 + 6) is

sufficient for Alchian's proposition two to hold. However, if a

is somewhat greater than zero and y is large (close to 1) then (21)

will be negative and proposition two will not hold.

This result also contradicts Oi's claims concerning cost as

a function of production rate. If the partial derivatives referred

to in Oi's footnote [7:590] are actually taken, we find that Oi's own

example (Y = 1,e = 6= 0) contradicts his claim that costs increase at

an increasing rate with production rate.

The impact of this result is that independent of the discount

rate, learning, or changes in the unit cost of capital with T, the

proposition holds generally only if we have both substantial decreasing

returns to scale and no input substitution possibilities.

The marginal cost curve is also the subject of Alchian's proposi-

tion six. He states as a "conjectural proposition" the "the marginal

present value-cost with respect to increased rates of output decreases

as the total contemplated output increases." Or a2C(V,q)/aqaV < 0.

Differentiating (14) 1

32C(V,q)/aqaV - q/Y-2h- e-T{ (I/y+_l)pgT- (24)

i-c+ (1/y-6)q-s -6 -6 T-6
+ pgT + l1qT + q T

- aq-6 r(-6,T)[T-6r- (1-6,T)-T-er-I (1-c,T)P]Tg/(g+x)}

° ,.,.
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The first four terms of (24) are positive so Alchian's proposition

six fails to hold if a - 0. If 6 > £ the last term is negative and

large values for a under these circumstances will cause the proposi-

tion to hold. This proposition also fails to hold in Oi's example [7].

Hirshleifer (6] asserts that aC(T,q)/aq2 may be negative for low

values of q but that as q increases, the expression will become positive.

Performing this differentiation yields

a2C(T,q)/aq 2 = q 1/y-2 pr(l-e,T)h- {(I/y-l)(l/y)g (25)

+ (l/y-S)(l/y-S-l)x-a62gx/(g+x)}

If 6 = 0, decreasing returns to scale is sufficient for (25) to be posi-

tive as the proposition asserts. But if 6 > 0 and a > 0, (25) will be

negative for large y, contradicting the proposition.

SUMMARY OF RESULTS

In this paper, the interaction between returns to scale and

learning was investigated using a homogeneous production function.

A cost function for the problem of production to customer order was

derived. In this situation, several exceptions to previously de-

rived propositions concerning the form of the resulting cost function

were uncovered.

In particular, Alchian's assertion that with V fixed, marginal

costs increase with production rate was found to require that the

production function exhibit substantial decreasing returns to scale

if there were possibilities for input substitution. Alchian's

"conjectural proposition" that marginal costs decrease with volume,

was found to hold only in the presence of input substitution and sub-

stantial learning. In the presence of learning, exceptions were also

found to Hirshleifer's proposition that marginal costs rise with
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production rate when the length of the program is fixed. I
Ultimately, the shape of the cost function is an empirical I

question. While no studies were uncovered which simultaneously

addressed learning, input substitution and returns to scale, these

have been studied separately. Conway and Shultz [4] report estimates

for 6 ranging from about 0.2 to 0.5 in various assembly operations.

Dhrymes' [51 study of the CES production function yields estimates

of y in the range .997 to 1.218 and estimates of a in the range

0.05 to 1.984 for manufacturing in the U.S. If these ranges of

estimates are indicative of the true parameter space, it seems likely

that empirical support may be available both for and against the three

questioned propositions in different settings. Until this empirical

work is completed, the shape of the program cost function in any

particular circumstance must be regarded as an open question.
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